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A mild and rapid Michael addition of mercaptans to α, β-unsaturated ketones has been achieved in
excellent yields, using catalytic amount of (bromodimethyl)sulfonium bromide.
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1. Introduction

The Michael reaction i.e., conjugate addition of nucleophile(s) to α, β-unsaturated carbonyl
compounds is one of the remarkable reactions in organic synthesis. It has attracted enormous
attention mainly because it is one of the most important C-C or C-S bond formation reactions
[1]. The Michael addition of mercaptans to α, β-unsaturated carbonyl compounds constitutes
the key step in synthetic pathway of many bioactive molecules both man made and natural
[2–6]. Further, it also provides a method for protection of double bond(s) of α, β-unsaturated
carbonyl compounds mainly due to the ease with which they can be regenerated [7, 8]. From
a synthetic chemist’s perspective, numerous fascinating reports on the thia Michael addition
reactions involving heterogeneous [9–17] catalysts; conjugate additions comprising activation
of thiols by bases [18–21] and Lewis acids [22–29] have appeared in literature.

Despite their extensive success, many of the methods suffer from drawbacks such as usage
of exotic and stoichiometric reagents, harsh reaction conditions, cumbersome work-up pro-
cedures, low yields, etc. Since the thia-Michael addition reaction is an often-encountered
synthetic step in synthesis of bioactive/medicinal compounds like diltiazem [30], a simple,
efficient method would be an agreeable lead. Herein, we report an experimentally conve-
nient, mild and solvent free conjugate addition of mercaptans to α, β-unsaturated carbonyl
compounds.

Over the past few years, (bromodimethyl)sulfonium bromide emerged as a powerful cata-
lyst [31–34] for various organic transformations especially in solvent free conditions [35, 36].
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SCHEME 1

The Michael addition of thiols to α, β-unsaturated carbonyl compounds occurred almost
instantaneously at room temperature in the presence of catalytic amount of (bro-
modimethyl)sulfonium bromide (5 mol%) to generate the 1,4- adducts in excellent yields
(scheme 1). Reaction temperature plays a crucial role. Initially the reaction was carried out
at 0 ◦C and was found to be incomplete and low yielding in spite of prolonged reaction time.
However, at room temperature (24–27 ◦C) the conjugate addition was found to yield opti-
mum results. Higher temperatures found to be detrimental with concomitant formation of
by-product, disulfide. Similarly usage of 10 mol% of the catalyst did not significantly alter the
rate of addition or the yield indicating that 5 mol% catalyst is sufficient for the conversion.

Once the reaction conditions were established, the generality of the method was examined
by subjecting a variety of α, β-unsaturated carbonyl compounds to thia Michael addition by
aromatic as well as aliphatic thiols in solvent free conditions (table 1). All the products were
formed rapidly (3–5 min) and isolated in good yields. Unsubstituted enones, substituted enones
all react with the thiols in a rapid manner. The substitutions on the phenyl rings of the α, β-
unsaturated carbonyl compounds whether attached to carbonyl or to the olefinic group do not
seem to significantly alter the yields of the reactions. It was also found that the addition of
thiophenol was faster and better yielding when compared to ethanethiol. The reaction proceeds
well with even solid α, β-unsaturated ketones. However, it was found that addition of solid
thiols was not effective (as illustrated by example 9, 10; table 1).

The role of the catalyst, (bromodimethyl)sulfonium bromide, is somewhat like that of Lewis
acid i.e., an electrophilic activation by co-ordination to the carbonyl oxygen of α, β-unsaturated
carbonyl compound thereby rendering the β-carbon susceptible to nucleophilic attack by thiol.
Instantaneous evolution of HBr was observed on addition of the catalyst to the mixture of thiol
and α, β-unsaturated carbonyl compounds which indicates that the first step would be the reac-
tion between (bromodimethyl)sulfonium bromide and the thiol leading to the formation of the
species [Me2BrS+]−SR as shown in the scheme below. The earlier report [37] suggests forma-
tion of [Me2BrS+]−OR when ROH was added to the catalyst, which validates the formation
of [Me2BrS+]−SR. This might be the active species that is generated until the exhaustion
of the thiol and addition of water during the work-up when dimethyl sulfoxide is generated
(scheme 2).

To summarize, we have been successful in developing a simple, convenient, mild, rapid and
solvent free method for thia Michael addition using 5 mol% of (bromodimethyl)sulfonium
bromide. This environmentally friendly protocol provides a viable alternative to the current
methods.

2. Experimental

2.1 General procedure

To a stirred mixture of equimolar amounts (1 mmol) of the thiol and the α, β-unsaturated
ketone, (bromodimethyl)sulfonium bromide (5 mol%) (for preparation of the catalyst refer to
G.A. Olah, Y.D. Vankar, M. Arvanghi, G.K. Suryaprakash Synthesis 720 (1979)) was added.
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Table 1. Thiol Michael additions to α, β-unsaturated carbonyl compounds.

Unsaturated Time Yield M.P.
Entry ketone Thiol Product (min) (%)∗ (◦C)

1. 2a: PhSH 3 941 –

2. 2b: EtSH 4 92 –

3. 2c: H3CPhSH – –

4. 2d: C4H4NSH
– –

5. 2a: PhSH 3 89 79–81

6. 2b: EtSH 4 80 85–86

7. 2a: PhSH 3 92 67–69

8. 2b: EtSH 4 88 68–69

9. 2a: PhSH 4 84 –

(continued)
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Table 1. Continued.

Unsaturated Time Yield M.P.
Entry ketone Thiol Product (min) (%)∗ (◦C)

10. 2b: EtSH 5 84 –

11. 2a: PhSH 2 857 –

12. 2b: EtSH 3 817 –

13. 2c: H3CPhSH – –

14. 2a: PhSH 3 86 95–96
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15. 2a: PhSH 4 90 –

16. 2a: PhSH 3 907 –

17. 2b: EtSH 3 927 –

∗all yields are isolated.
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SCHEME 2

The reaction mixture was stirred at room temperature for 3–5 min. After completion of the
reaction as indicated by TLC, the reaction mixture is diluted with water and extracted with
ethyl acetate. After the usual drying, the organic layers were concentrated and the product
obtained purified by column chromatography (8:2-hexane: ethyl acetate).

2.2 Compound 3ab

IR (ν, cm−1): 3015, 2883, 1640, 772, 608; 1H NMR(δ): 7.46 (d, J = 8 Hz, 2H, Ar), 7.22 (d,
J = 7 Hz, 2H, Ar), 6.20 (d, J = 6 Hz, 1H), 5.29 (d, J = 6 Hz, 1H), 2.40 (m, 2H, S-CH2),
1.24 (t, J = 6 Hz, 1H), 1.08 (t, J = 7 Hz, 3H, CH3); E.I. Mass: 304 (M+); CHN Analysis:
Calcd-C: 66.98, H: 5.62, S: 10.52, Found: C: 65.97, H: 5.56, S: 10.41.

2.3 Compound 3ba

IR (ν, cm−1): 3115, 2707, 1726. 1H NMR(δ): 8.25 (d, J = 8 Hz, 1H, Ar), 8.03 (d, J = 8 Hz,
1H, Ar), 7.45 (m, 4H, Ar), 7.20 (m, 3H, Ar), 5.68 (t, J = 4 Hz, 1H), 3.98 (m, 1H); E.I. Mass:
431 (M+); CHN Analysis: Calcd-C: 53.13, H: 3.93, N: 3.64, S: 8.34; Found: C: 52.33, H:
3.89, N: 3.60, S: 8.23.

2.4 Compound 3bb

IR (ν, cm−1): 3045, 2560, 1720; 1H NMR(δ): 8.30 (d, J = 8 Hz, 1H, Ar), 8.10 (d, J = 8
Hz, 1H, Ar), 7.24 (m, 3H, Ar), 7.10 (d, J = 7 Hz, 1H, Ar), 5.40 (t, J = 6 Hz, 1H), 3.65 (dd,
J = 12 Hz, 8 Hz, 1H), 2.7 (q, J = 4,12 Hz, 2H) 1.23 (t, J = 8 Hz, 3H); E.I. Mass: 383 (M+);
CHN Analysis: Calcd-C: 53.13, H: 3.93, N: 3.64, S: 8.3; Found: C: 52.59, H: 3.89, N: 3.60,
S: 8.20.
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2.5 Compound 3ca

IR (ν, cm−1): 3010, 2950, 1700; 1H NMR(δ): 8.20 (d, J = 8 Hz, 1H, Ar), 8.0 (d, J = 8 Hz,
1H, Ar), 7.63 (d, J = 7 Hz, 1H, Ar), 7.25 (d, J = 8 Hz, 1H, Ar), 7.10 (m, 5H, Ar), 4.65 (t,
J = 6 Hz, 1H), 3.02 (d, J = 4 Hz, 2H), 1.2 (s, 3H, CH3), 1.0 (s, 3H, CH3); E.I. Mass: 329
(M+); CHN Analysis: Calcd-C: 65.60, H: 5.81, N: 4.25, S: 9.73; Found: C: 64.68, H: 5.75, N:
4.20, S: 9.53.

2.6 Compound 3cb

IR (ν, cm−1): 3115, 2966, 1702; 1H NMR(δ): 8.40 (d, J = 8 Hz, 1H, Ar), 8.02 (d, J = 7
Hz, 1H, Ar), 7.31 (m, 5H, Ar), 7.13 (d, J = 8 Hz, 1H, Ar), 5.20 (t, J = 6 Hz, 1H), 4.10 (m,
1H), 3.80 (m, 1H), 2.42 (m, 2H) 1.23 (t, J = 6 Hz, 3H); E.I. Mass: 281 (M+); CHN Analysis:
Calcd-C: 59.76, H: 6.80, N: 4.97, S: 11.40; Found: C: 58.86, H: 6.73, N: 4.92, S: 11.25.

2.7 Compound 3da

IR (ν, cm−1): 3038, 2881, 1726, 892, 772; 1H NMR(δ): 7.80 (d, J = 7 Hz, 1H, Ar), 7.40 (s,
1H, Ar), 7.10 (d, J = 8 Hz, 2H, Ar), 6.95 (d, J = 8 Hz, 2H, Ar), 4.20 (m, 1H), 3.28 (d, J = 4
Hz, 2H), 2.25 (q, J = 4, 12 Hz, 2H), 1.10 (t, J = 6 Hz, 6H); E.I. Mass: 370 (M+); CHN
Analysis: Calcd-C: 68.01, H: 4.34, S: 8.64; Found: C: 66.92, H: 4.25, S: 8.55.

2.8 Compound 3db

IR (ν, cm−1): 3035, 2973, 1713, 760; 1H NMR(δ): 7.60 (m, 2H, Ar), 7.52 (s, 1H, Ar), 7.40–
7.30 (m, 4H, Ar), 4.75 (q, J = 4, 12 Hz, 1H) , 3.52 (d, J = 6 Hz, 2H); E.I. Mass: 322 (M+);
CHN Analysis: Calcd-C: 63.25, H: 4.99, S: 9.93; Found: C: 62.30, H: 4.96, S: 8.38.

2.9 Compound 3fa

IR (ν, cm−1): 3026, 2933, 1670; 1H NMR(δ): 7.80 (d, J = 8 Hz, 2H, Ar), 7.23 (m, 2H, Ar),
6.82 (d, J = 8 Hz, 2H, Ar), 4.80 (t, J = 6 Hz, 1H), 3.80 (s, 3H, OCH3), 3.42 (d, J = 4 Hz,
2H); E.I. Mass: 382 (M+); CHN Analysis: Calcd-C: 69.01, H: 4.96, S: 8.38; Found: C: 68.04,
H: 4.91, S: 8.29.

2.10 Compound 3ga

IR (ν, cm−1): 3050, 2926, 1710, 719, 688; 1HNMR(δ): 7.43 (m, 3H, Ar), 7.20 (d, J = 8 Hz,
2H, Ar), 7.12 (d, J = 7 Hz, 2H, Ar), 5.0 (t, J = 6 Hz, 1H, Ar), 3.60 (m, 1H), 2.25 (s, 3H,
CH3); E.I. Mass: 366 (M+); CHN Analysis: Calcd-C: 72.01, H: 5.22, S: 8.73; Found: C: 70.92,
H: 5.16, S: 8.64.
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